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Abstract. Previous calculations of spectral density functions for like-spin magnetic dipolar
interactions between spins undergoing two-dimensional diffusion are extended to the hexagonal
lattice and the honeycomb structure. The diffusion models used are the random-walk and mean-
field models. Analytic approximations to the functions are obtained. It is shown that the simple
function proposed by Richards cannot provide good accuracy over the whole range of frequency
and temperature, and a modified function is suggested.

1. Introduction

Nuclear spin relaxation is an excellent technique for detecting and analysing two-
dimensional diffusion. In the low-frequency or high-temperature limits the spectral density
functions of the microscopic field fluctuations, and the consequent relaxation rates, have
a logarithmic frequency dependence which is characteristic of two-dimensional diffusion
(Sholl 1981). This has been used to show, using a variety of spin-relaxation techniques,
that diffusion is essentially two dimensional in some intercalation compounds and layered
compounds and on some crystal surfaces (see, for example, Heitjanset al (1991), McDowell
et al (1995), Ebingeret al (1996), Kimmerle et al (1997) and references therein).
The logarithmic frequency dependence is sufficient to confirm that the diffusion is two
dimensional, but the form of the spectral density function over the entire range of frequencies
is required to deduce details of the diffusion, such as the mean atom jump rate and the
contribution to the diffusion from jumps between planes.

A simple spectral density function of the form log[1+ 1/(ωτ)2], whereτ is the mean
jump rate, has been suggested by Richards (1978) for two-dimensional diffusion. This
function has the correct functional form for both large and smallωτ , but it will not
necessarily show the correct rate of approach to the limits and its accuracy for intermediate
ranges ofωτ is not clear. Detailed calculations of spectral density functions are required
to provide a firm basis for analysing relaxation data over the entire range of temperature
and frequency, and to assess the accuracy of simple approximations such as that due to
Richards. Spectral density functions for like-spin magnetic dipolar interactions between
spins undergoing two-dimensional diffusion on a square lattice, have been obtained by
Stephenson and Sholl (1993) (to be referred to as SS). These calculations were carried
out for random-walk and mean-field diffusion models and were compared with previous

0953-8984/98/020417+12$19.50c© 1998 IOP Publishing Ltd 417



418 D H MacDonald et al

continuum diffusion theories. The mean-field results provide exact spectral density functions
in the limit of low concentration of diffusing spins and provide a reasonable approximation
at other spin concentrations.

Two-dimensional diffusion commonly occurs in hexagonal systems and the aim of this
paper is to extend the previous calculations to models of diffusion on the hexagonal lattice
and the honeycomb structure. The extension to the hexagonal lattice is a straightforward
application of the theory, but the honeycomb structure introduces complications because it
is not a Bravais lattice.

The next section describes the dependence of the spectral density functions on the
magnetic field direction, and outlines the general method of calculation of the functions for
a crystal with several sites per unit cell. The following section evaluates expressions for
the probability functions required for each of the random-walk and mean-field models. The
results are then presented and analytic approximations are given which allow the spectral
density functions to be easily reproduced. It is shown that the simple function suggested
by Richards cannot provide good accuracy over the entire range, and a modification of it is
suggested.

2. Spectral density functions

The spectral density functionsJ (p)(ω) depend on the orientation of the applied magnetic
field with respect to the plane of diffusion. For the hexagonal lattice and the honeycomb
structure the functional dependence is (SS, Sholl 1986)

d−2
0 J (0)(ω) = J00(ω)− 3J00(ω) sin2 θ + 3

4
[3J00(ω)+ J22(ω)] sin4 θ (1)

d−2
1 J (1)(ω) = 1

2
[3J00(ω)+ 2J22(ω)] sin2 θ − 1

2
[3J00+ J22(ω)] sin4 θ (2)

d−2
2 J (2)(ω) = J22(ω)− J22(ω) sin2 θ + 1

8
[3J00(ω)+ J22(ω)] sin4 θ (3)

whereθ is the angle between the applied field and the normal to the plane, andd2
0 = 16π/5,

d2
1 = 8π/15, d2

2 = 32π/15. The functionsJ00(ω) andJ22(ω) are defined by

Jpp(ω) = c
∑
α,β

Y ∗2p(�α)

r3
α

Y2p(�β)

r3
β

P (rα, rβ, ω) (4)

wherec is the fraction of sites occupied by spins,Y2p(�) are normalized spherical harmonics
relative to the normal to the plane andP(rα, rβ, ω) is the real part of the complex Fourier
transform

Pc(rα, rβ, ω) = 2
∫ ∞

0
P(rα, rβ, t)e

iωt dt (5)

of P(rα, rβ, t), which is the probability of a pair of spins being separated byrβ a time
t after they were separated byrα. The relaxation rates are linear combinations of these
spectral density functions (see, for example, Sholl 1986).

The angular dependence ofJ (p)(ω) in equations (1)–(3) is appropriate for nuclear
spin-relaxation experiments using single crystals. For polycrystalline samples, it is a
reasonable approximation to replace the average over relaxation rates by an average over
the spectral density functions (Barton and Sholl 1976), and each of theJ (p)(ω) then become
d2
p(J00(ω)+ 2J22(ω))/5.

As described in SS, an efficient practical approach for the evaluation of equation (4) is
to use a reciprocal-space formalism. The extension of this theory to non-Bravais lattices
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requires consideration of the possible types of relative separation of a pair of diffusing spins
in relation to the basis of the crystal structure. For a basis ofB sites per unit cell there are
B2 types of separation of a pair of spins for each ofrα at time zero andrβ at time t . The
reciprocal-space expression forJpp(ω) for non-Bravais lattices then becomes

Jpp(ω) = 1

(2π)4
c

B2

B2∑
m,n=1

∫ ∫
dq dq′ T ∗p (q, jm)Tp(q

′, jn)Pmn(q, q′, ω) (6)

wherePmn(q, q′, ω) is the temporal and spatial Fourier transform ofP(rα, rβ, t) for a pair
of spins with a separation of typem at time zero and a separation of typen at time t . It
has been assumed that the probability of occupation of a site by a spin is the same for
all sublattices. The functionsTp(q, j) are the Fourier transforms ofY2p(�α)/r

3
α for spins

separated byl+j, wherel is a lattice vector, and expressions for their evaluation are given
in the appendix of SS. The integrals are over the first Brillouin zone of the reciprocal lattice,
with the area element dq = A dq1 dq2, whereA is the area of the two-dimensional unit
cell.

Care must be taken in the use ofP(q, q′, ω) in equation (6). The real part of the
temporal Fourier transform is required, but this cannot be obtained by taking the real part
of Pc(q, q′, ω) whenP(q, q′, t) is complex, which can occur for non-Bravais lattices. The
appropriate procedure is to evaluate [Pc(q, q

′, ω) + Pc(q, q′,−ω)]/2 and use this form in
equation (6).

The simplest lattice diffusion model is the random-walk model for which each of a
pair of spins is assumed to undergo a random walk with a mean timeτs between jumps.
Both spins may therefore occupy a particular site in this model, but this case is excluded
from contributing to the expression (6) through the definition ofTp(q, j). The site-blocking
effects of a pair of spins are correctly taken into account in the mean-field model, which
provides an exact analysis of the lattice diffusion of a pair of spins on a lattice. The mean-
field model therefore provides an exact calculation of the spectral density functions in the
limit of low spin concentrations. An approximation for an arbitrary spin concentrationc is
obtained by using the mean-field results withτs taken as the mean time between jumps of
a spin at that spin concentration; the correlations between the diffusion of a pair of spins
and all other spins are then included in an average manner. Random-walk and mean-field
expressions for the diffusion probabilities are obtained in the next section for diffusion on
the hexagonal lattice and honeycomb structure.

3. Probability functions

3.1. The hexagonal lattice

The probability functionsP(q, q′, ω) for the hexagonal lattice are a straightforward
application of the theory described in SS for the square lattice, for both the random-walk
and mean-field models. The random-walk expression forP(q, q′, ω) for any Bravais lattice
is

PRW(q, q
′, ω) = 2(2π)2τ [1− φ(q)]

[1− φ(q)]2+ (ωτ)2 δ(q − q
′) (7)

whereτ = τs/2, with τs the mean time between jumps of a single spin,φ(q) is the lattice
structure factor given by

φ(q) =
∑
k

wk exp(−iq · rk) (8)
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andwk is the probability that a jump of a spin at the origin will be tork. For the hexagonal
lattice, with a 120◦ unit cell and lattice parametera, the values ofwk are 1/6 and

φ(q) = 1

3

[
cosq1a + cosq2a + cos(q1+ q2)a

]
. (9)

The mean-field theory gives an integral equation with a separable kernel forP(q, q′, ω)
and the method of solution is similar to that used by SS, Barton and Sholl (1976) and
Fedders and Sankey (1978). The solution is

Pmf(q, q
′, ω) = Prw(q, q

′, ω)+ 2

3τ
<
{
d0(q, ω)d0(q

′, ω)
3∑

i,j=1

Lij (ω)fi(q)fj (q
′)

}
(10)

where the functionsd0(q, ω) andfi(q) are

d0(q, ω) = τ

[1− φ(q])− iωτ
(11)

f1(q) = 1− cosq1a (12)

f2(q) = 1− cosq2a (13)

f3(q) = 1− cos(q1+ q2)a. (14)

Expressions forLij (ω) are given in the appendix.

3.2. The honeycomb structure

The honeycomb structure may be described as two displaced hexagonal lattices as shown in
figure 1. The vectorsa1 anda2 are the basis of one hexagonal lattice, witha1 = a2 =

√
3a,

wherea is the length of a segment of a honeycomb hexagon. The sites on this lattice will
be denoted as type 1 sites. The second hexagonal lattice is displaced from this lattice by
b = (a1 + 2a2)/3 and these lattice sites will be denoted as type 2 sites. The complete
set of type 1 and type 2 sites form the honeycomb structure. Each site has three nearest
neighbours: for type 1 sites they areb − pk and for type 2 sites they areb + pk, where
p1 = 0,p2 = a2 andp3 = a1+ a2, which are hexagonal-lattice vectors.

Figure 1. The honeycomb structure as a superposition of two hexagonal lattices separated by
b = (a1 + 2a2)/3.

The different types of probabilityP(rα, rβ, t) will be denoted asPmn(l, l′, t) (m, n = 1
to 4): m = 1 and 2 denotes an initial separation ofl with both spins at type 1 and type 2
sites, respectively,m = 3 denotes an initial separation ofl + b with the spin at the origin
a type 1 site and the other spin a type 2 site,m = 4 denotes an initial separation ofl − b
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with the spin at the origin a type 2 site and the other spin a type 1 site. A corresponding
notation usingl′ and the indexn describes final spin separation types.

The probability functions for the mean-field theory can be obtained from the following
rate equations forPmn(l, l′, t):

dPmn(l′, t)
dt

= − 2

τs
Pmn(l

′, t)

+ [1− δl′,0]

3τs

3∑
k=1

[
Pm3(l

′ − pk, t)+ Pm4(l
′ + pk, t)

]
n = 1, 2 (15)

dPm3(l
′, t)

dt
= − 2

τs

[
1− 1

3

3∑
k=1

δl′,−pk

]
Pm3(l

′, t)

+ 1

3τs

3∑
k=1

[
Pm1(l

′ + pk, t)+ Pm2(l
′ + pk, t)

]
(16)

dPm4(l
′, t)

dt
= − 2

τs

[
1− 1

3

3∑
k=1

δl′,pk

]
Pm4(l

′, t)

+ 1

3τs

3∑
k=1

[
Pm1(l

′ − pk, t)+ Pm2(l
′ − pk, t)

]
. (17)

The variablel in Pmn(l, l′, t) has been suppressed throughout. The Kronecker delta functions
in these equations represent the terms for which jumps cannot occur due to site blocking. If
these delta functions are omitted, the equations become those for the random-walk theory.
The initial conditions for the equations, in the mean-field theory, are

Pmn(l, l
′, 0) = 0 m 6= n (18)

P11(l, l
′, 0) = P22(l, l

′, 0) = δl,l′ [1− δl′,0] (19)

P33(l, l
′, 0) = P44(l, l

′, 0) = δl,l′ . (20)

The initial conditions for the random-walk theory omit the termδl′,0.
Taking the spatial Fourier transform with respectl and l′, and the temporal transform

(5), of these rate equations and initial conditions gives the matrix equation

P(q, q′, ω)Y(q′, ω) = X(q, q′, ω)+ D(q, q′) (21)

where the elements ofP are the transformed probability functionsPmn(q, q′, ω), D is a
diagonal matrix, with elementsD11 = D22 = D − 4τ andD33 = D44 = D, the matrixY
and its inverse are

Y =


W 0 −φ∗ −φ
0 W −φ∗ −φ
−φ −φ W 0
−φ∗ −φ∗ 0 W



Y−1 = N


W 2− 2φφ∗ 2φφ∗ Wφ∗ Wφ

2φφ∗ W 2− 2φφ∗ Wφ∗ Wφ

Wφ Wφ W 2− 2φφ∗ 2φ2

Wφ∗ Wφ∗ 2φ∗2 W 2− 2φφ∗


andD, W andN are

D = 4τ(2π)2δ(q − q′) (22)

W = 2(1− iωτ) (23)
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N = 1

W [W 2− 4φφ∗]
. (24)

These expressions have been written in terms ofτ = τs/2. The elements of the matrixX
are

Xmn(q, ω) = − 1

(2π)2

∫
[φ(q1)Pm3(q, q1, ω)+ φ∗(q1)Pm4(q, q1, ω)] dq1 n = 1, 2

(25)

Xmn(q, q
′, ω) = 2

(2π)2

∫
[φ(q1− q′)δn3

+ φ∗(q1− q′)δn4]Pmn(q, q1, ω) dq1 n = 3, 4 (26)

where the structure factorφ(q) for the honeycomb structure is

φ(q) = 1

3
{1+ cos(q2a)+ cos(q1+ q2)a − i[sin(q2a)+ sin(q1+ q2)a]} . (27)

The corresponding equations for the random-walk theory haveX = 0 and D = DI
whereI is the identity matrix. The probability functions for the random-walk theory of the
honeycomb structure are then given immediately byDY−1.

Figure 2. Spectral density functionsg00(ωτ) for a simple random-walk model and the mean-
field model on the square, hexagonal and honeycomb structures. The approach of the mean-field
model to the− log(ωτ) limit for small ωτ is shown in the inset. In all of these, the results for
the square and honeycomb structures have been multiplied by 2 and 0.5 respectively for clarity.

To obtain the probability functions for the mean-field theory it is necessary to evaluate
the matrixX. This is achieved by definingKmk(q, ω) andLmk(q, ω) (m = 1 to 4,k = 1 to
3) to be

Kmk(q, ω) = 1

3(2π)2

∫
e−iq1·pkPm3(q, q1, ω) dq1 (28)

Lmk(q, ω) = 1

3(2π)2

∫
eiq1·pkPm4(q, q1, ω) dq1 (29)
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and writingXmn in terms ofKmk andLmk. Substituting(X+D)Y−1 for P into the integral
definitions ofKmk andLmk then provides a set of linear equations for them. The resulting
equations show thatKmk(q) = Lmk(−q) and allow the calculation of the elements ofX.
The final expressions for evaluatingPmn(q, q′, ω) for the mean-field theory are given in the
appendix.

4. Results

The probability functions in the previous section were used to calculate the spectral density
functionsJ00(ω) andJ22(ω), using equation (6), for the hexagonal lattice and honeycomb
structure for both the random-walk and mean-field models. The high-frequency limit of
these functions can be calculated independently of the above theory by considering the
probabilities of zero or one jump of each of a pair of spins (Barton and Sholl 1980). This
calculation was performed in all cases as a check on the results.

Table 1. Values ofa6Spp′ for the square, hexagonal and honeycomb structures wherea is the
distance between nearest-neighbour sites.

Square Hexagonal Honeycomb

a6S00 0.463 4307 0.634 2207 0.164 4276
a6S22 0.695 1461 0.951 3310 0.246 6414
a6S2−2 0.528 6311

Figure 3. Spectral density functionsg22(ωτ) for a simple random-walk model and the mean-
field model on the square, hexagonal and honeycomb structures. The inset shows the mean-field
results on a semi-logarithmic plot. The results for the square and honeycomb structures have
been multiplied by 2 and 0.5 respectively for clarity.
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The results are presented in terms of the dimensionless functionsgpp(ωτ) defined by

Jpp(ω) = cτSppgpp(ωτ) (30)

where τ = τs/2 and Spp are constants which depend only on the geometry of the
structure (SS). The values ofSpp are given in table 1.

Graphs of the calculated spectral density functions are shown in figures 2 and 3, which
also include the results for the square lattice (SS) for comparison. As in the case of
the square lattice, all functions show 1/(ωτ)2 behaviour in the large-ωτ limit, g22(ωτ)

approaches a constant asωτ → 0 andg00(ωτ) diverges as log(ωτ) in the small-ωτ limit.
The general forms of the functions are similar for all three structures and the magnitudes
are also similar, so the results have been suitably scaled in the graphs to separate the curves.
There are, however, differences in detail between the results for each structure and between
the random-walk and mean-field results.

Table 2. Parameter values for the analytic approximationga00(ωτ) (equation (31)) for the
random-walk (RW) and mean-field (MF) models of diffusion on the square, hexagonal and
honeycomb structures. The maximum deviation,1, of ga00 from the true spectral density function
g00 in each case is also shown.

Square Hexagonal Honeycomb

RW MF RW MF RW MF

A 0.412 6263 0.506 0716 0.432 0516 0.504 9257 0.405 7198 0.405 7182
B 2.876 767 1.497 285 2.281 056 1.330 594 3.524 278 2.033 209
C 28.0084 27.9817 25.8716 25.0542 27.6740 27.6740
v 27.0227 22.0330 24.3670 20.8502 26.1526 26.1527
a1 8.178 25× 10−3 9.192 23× 10−2 3.017 88× 10−2 0.178 734 2.971 18× 10−3 0.320 254
a2 8.487 36× 10−8 1.780 12× 10−5 4.138 57× 10−7 7.4955× 10−5 3.792 43× 10−8 8.745 31× 10−6

a3 1.441 32× 10−14 4.416 63× 10−11 7.186 21× 10−14 4.028 84× 10−10 1.968 16× 10−14 4.605 14× 10−13

a4 1.630 16× 10−22 7.937 99× 10−18 2.642 52× 10−21 2.526 97× 10−16 2.710 36× 10−22 5.696 88× 10−22

u1 7.046 17 5.210 08 6.299 87 4.625 86 7.330 83 5.262 93
u2 12.2001 9.386 60 11.5056 8.656 30 12.0553 10.6328
u3 17.0250 13.4683 16.2262 12.7235 16.4586 15.9372
u4 21.1932 17.0255 19.9545 16.1455 20.5911 20.5556

1 16.6% 2.7% 5.0% 2.9% 20.2% 5.5%

Analytic approximations for the functions have been developed so that they can be
easily reproduced. These are

ga00 = A log

(
1+ B

(ωτ)2
+ 1

(Cωτ)w +
4∑
i=1

ai

(ωτ)ui

)
(31)

and

ga2±2 =
H

a + bωτ + c(ωτ)u + d(ωτ)v + (ωτ)2 (32)

where the values ofA, B, C, w, ai , ui , H , a, b, c, d, u andv are given in tables 2 and 3.
The functional forms of the spectral density functions in the high- and low-frequency limits
are modelled correctly by these functions. The maximum deviations of the approximations
from the correct values (which occur at intermediate values ofωτ ) are given in the tables.

It is of interest to determine how well a simple approximation of the type log[1+
1/(ωτ)2] can fit the functions. Firstly, this function is not suitable forJ22 since this spectral
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Table 3. Parameter values for the analytic approximationga2±2(ωτ) (equation (32)) for the
random-walk (RW) and mean-field (MF) models of diffusion on the square, hexagonal and
honeycomb structures. The maximum deviation,1, of ga2±2 from the true spectral density
function g2±2 in each case is also shown.

ga22 ga2−2

Square Hexagonal Honeycomb Square

RW MF RW MF RW MF RW MF

H 1.815 078 1.385 794 2.066 703 1.753 021 1.695 424 1.090 465 1.902 251 1.337 744
a 0.637 591 0.379 143 0.818 592 0.615 645 0.561 737 0.248 707 0.794 866 0.387 051
b −11.8938 −2.544 80 −28.0582 −28.0591 −7.209 38 −7.125 45 10.3291 −0.373 114
c 26.2052 −0.249 088 −13.8554 −13.8571 −8.448 15 −8.400 96 −9.283 21 −2.225 71
d −13.9867 3.016 42 42.323 42.2117 15.9428 15.6497−0.843 255 2.743 01
u 1.032 56 1.500 31 1.0769 1.1058 1.086 44 1.064 25 0.981 328 1.344 42
v 1.074 56 1.006 61 1.019 55 1.030 66 1.035 53 1.030 85 1.307 92 1.252 55

1 3.1% 3.2% 3.9% 5.0% 2.6% 0.81% 3.1% 4.2%

Figure 4. The spectral density functiong00(ωτ) for the mean-field model on the honeycomb
structure. The broken line shows the best fit of the functiongR00(ωτ) (equation (33)).

density function does not have a logarithmic divergence in the small-ωτ limit. Secondly,
a functionA log[1+ B/(ωτ)2] with only two parameters cannot fitg00(ωτ) in both the
low-frequency limit, of the forma1− b1 log(ωτ), and the high-frequency limit, of the form
a2/(ωτ)

2. However, a modified function with four parameters, of the form

gR00 =
2∑
i=1

Ai log[1+ Bi/(ωτ)2] (33)

can fit both of these limits with an additional parameter to optimize the fit for intermediate
values ofωτ . Values of the parametersAi andBi for this approximation are given in table 4
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Table 4. Parameter values for the analytic approximationgR00(ωτ) (equation (33)) for the
random-walk (RW) and mean-field (MF) models of diffusion on the square, hexagonal and
honeycomb structures. The maximum deviation,1, of gR00 from the true spectral density function
g00 in each case is also shown.

Square Hexagonal Honeycomb

RW MF RW MF RW MF

A1 5.023 189 4.390 948 4.501 319 3.987 634 4.689 857 4.206 727
A2 0.551 949 1.184 188 0.762 583 1.276 261 0.529 734 1.098 587
B1 5.635 58× 10−4 4.815 41× 10−4 4.752 70× 10−4 2.489 99× 10−4 5.427 68× 10−4 2.484 85× 10−4

B2 2.145 490 1.031 570 1.289 560 0.525 643 2.694 420 0.749 9320

1 44% 43% 37% 23% 36% 25%

and an example of the quality of the fit is shown in figure 4. The function is quite accurate
for both small and largeωτ but can have errors of∼30% in the intermediate regions.

5. Conclusion

The spectral density functions calculated from the mean-field model provide an accurate
means of analysing nuclear spin-relaxation data for like-spin magnetic dipolar interactions
between spins undergoing translational diffusion on a two-dimensional hexagonal lattice or
the honeycomb structure. The functions provide a rigorous solution for diffusion at low
spin concentrations and are likely to be a reasonable approximation at other concentrations.

The method used for non-Bravais lattices could, in principle, be extended to more
complex structures. This would be straightforward for the random-walk model, but the
mean-field model is considerably more complicated and the increase in algebraic complexity
and computing required for this model could be appreciable.

Appendix

The functionsLij (ω) (i, j = 1 to 3) in equation (10) for the probability functions for the
mean-field theory of the hexagonal lattice are

L11 = L22 = −K5/(K1K2) (A1)

L12 = L21 = −K4/(K1K2) (A2)

L13 = L23 = I3/K2 (A3)

L31 = L32 = −K3/(K1K2) (A4)

L33 = K6/K2 (A5)

whereKi(ω) (i = 1 to 6) are

K1 = 1− I1+ I2 (A6)

K2 = (1− I4)(1− I1− I2)− 2I 2
3 (A7)

K3 = I3(I1− I2− 1) (A8)

K4 = I4I2− I2− I 2
3 (A9)

K5 = I 2
3 − 1+ I1+ I4− I4I1 (A10)

K6 = 1− I3− I2. (A11)



NMR magnetic dipolar spectral density functions 427

The functionsIi(ω) (i = 1 to 4) are

Ii(ω) = 1

3τ(2π)2

∫
dq d0(q, ω)gi(q) (A12)

where the functionsgi(q) are

g1(q) = [1− cosq1a]2 (A13)

g2(q) = 1− 2 cosq1a + cosq1a cosq2a (A14)

g3(q) = 1− cosq1a + cosq1a cos(q1+ q2)a (A15)

g4(q) = [1− cos(q1+ q2)a]2. (A16)

The probability functions for the mean-field theory of the honeycomb structure may be
calculated from the following equations:

P = (X+ D)Y−1 (A17)

Xmn(q, ω) = −
3∑
k=1

[Kmk(q, ω)+ Lmk(q, ω)] n = 1, 2 (A18)

Xm3(q, q
′, ω) = 2

3∑
k=1

eiq′·pkKmk(q, ω) (A19)

Xm4(q, q
′, ω) = 2

3∑
k=1

e−iq′·pkLmk(q, ω) (A20)

where the elements of the 4× 3 matricesK andL are obtained from

M(3I+ C) = E (A21)

where the 4× 6 block matrixM = (K, L). The matrixI is the 6× 6 unit matrix, and the
elements ofC andE are

Cjk = 2Uk − 2V (l)jk l =
{

1 j andk = 1, 2, 3 or j andk = 4, 5, 6
2 otherwise

(A22)

Emk(q, ω) = 4τ [Fmk(q, ω)− Uk(δm,1+ δm,2)] (A23)

where the functionsFmk, Uk andV (l)jk are

Fmk(q, ω) = e−iq·pkNWφ∗ m = 1, 2 (A24)

F3k(q, ω) = e−iq·pkN(W 2− 2φφ∗) (A25)

F4k(q, ω) = e−iq·pk2N(φ∗)2 (A26)

Uk(ω) = 1

(2π)2

∫
F1k(q1, ω) dq1 (A27)

V
(1)
jk (ω) =

1

(2π)2

∫
eiq1·pj F3k(q1, ω) dq1 (A28)

V
(2)
jk (ω) =

1

(2π)2

∫
e−iq1·pj F4k(q1, ω) dq1 (A29)

for j andk = 1, 2, 3 while for j andk = 4, 5, 6

Fmk(q, ω) = Fm,k−3(q, ω) m = 1, 2, 3, 4 (A30)

Uk(ω) = Uk−3(ω) (A31)

V
(l)
k (ω) = V (l)k−3(ω) l = 1, 2 (A32)

andW , N andφ(q) are defined in section 3.
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